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CHEBYCHEV’S THEOREM 
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LAW OF LARGE NUMBERS / BERNOULLI’S THEOREM 
 
If the number of times a situation is repeated becomes larger and larger, the proportion of 
successes will tend to come closer and closer to the actual probability of success. 
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where x #of successes in n trials  

 
More generally, 
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where {Xk} are identical, mutually independent random variables with µ = E(Xk). 
 
CENTRAL LIMIT THEOREM / DE MOIVRE & LAPLACE 
 
The sum of n random numbers becomes more and more like a normal distribution. 
 
 Let {Xk} be a set of identical, mutually independent random variables 
 Let µ = E(Xk) and σ2 = Var(Xk) for all k.  Then, 
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 where S = X1 + X2 + … + Xn, and Φ(t) = cumulative standard normal distribution. 
 
Note: The theorem has been extended to cases where the distributions are not  identical 
and also when they are not independent. 
 


