Continuous Distributions

There are three versions for parameter entry for each of the continuous distributions:
[1] Parameters such as degrees of freedom (df) or scale (λ) are entered manually. If the value of p (area on the left) is entered, then the quantile (x) will be found when the evaluate button is pressed. The results are illustrated graphically.
[2] Parameters are entered by the sliders within their allowable ranges. When p is changed, or if any of the parameters are changed, a new value of the quantile (x) will appear.
[3] Parameters are entered by the sliders within their allowable ranges. When the quantile (x) is changed, or if any of the parameters are changed, a new value of the probability (p) will appear.
$f(x)=$ probability density function has the properties: $f(x) \geq 0$ for all x and $\int_{-\infty}^{\infty} f(t) d t=1$
$p=P(x)=\int_{-\infty}^{x} f(t) d t \quad q=1-p=Q(x)=\int_{x}^{\infty} f(t) d t$
The definitions and properties of these distributions are given at:
http://www.interactive-math.org/statistics/probdist.pdf and http://www.interactive-math.org/statistics/JohnsonSystemDistributions.pdf

Interrelationships among these distributions are given at:
http://www.interactive-math.org/statistics/dist interrelations.pdf

Distributions:

The normal/Gaussian (I am a doctoral mathematical descendent of Gauss), along with the Student-t, Chi-Square, and F distributions are standard in beginning undergraduate statistics classes. The gamma and beta distributions are discussed in higher level mathematical statistics classes. The Johnson system of functions (lognormal, Johnson-SB, and Johnson-SU) are transformed from the normal distribution and can be used for curve fitting skewed (nonsymmetric) distributions.

Example:

Consider the Chi-Square distribution.
The density function is shown on top.
Sliders are used to select the degrees of freedom (36) and p (0.95). The value of the quantile (x) is 50.998406 . The area in red (p) is 0.95 and the area in white (q) is 0.05 .

The reset may be used to restore default values. A reload/refresh will also restore values to the default values and redraw the graph.

Chi Square Distribution

Prof. Richard B. Goldstein

$$
f(x)=\frac{1}{2^{n / 2} \Gamma(n / 2)} x^{n / 2-1} e^{-x / 2} \quad P(x)=\int_{0}^{x} f(t) d t
$$

