
Where are the Outliers? – Prof. Richard B. Goldstein 

John Tukey’s Fences 

Using the inter-quarterly range of IQR = Q3 – Q1 Prof. John Tukey’s Exploratory Data Analysis set 

inner fences at Q1 – 1.5*IQR and Q3 + 1.5*IQR to represent the acceptable values.  Values below        

Q1 – 1.5*IQR or above Q3 + 1.5*IQR are known as outliers.  A second set of fences at Q1 – 3*IQR and 

Q3 + 3*IQR separate the extreme outliers. 

 

For a standard Gaussian Normal Distribution, 

Q1 = -0.67449  Q3 = 0.67449  IQR = 1.34898 

Q1 – 3*IQR = -4.721428 Q1 – 1.5*IQR = -2.69796 

Q3 + 3*IQR =  4.721428 Q3 + 1.5*IQR =  2.69796 

How likely is an outlier for a normal distribution? The area between the first and second fences is 

0.3488% on each side or 0.6976% totally.  Therefore, roughly 1 out of 140 values is an outlier. 

How likely is an extreme outlier? The area beyond the second set of fences is 1.17 x 10
-6

 on each side or 

2.34 x 10
-6

 totally.  Therefore an extreme outlier is roughly 1 out of 430,000. 

What if the data is not normally distributed? 

Consider n = 120 values of LDH (lactate dehydrogenase) taken in a laboratory. For the table shown on 

the following page 

Q1 = x(30.75) = 493 + 0.75(500 – 493) = 498.25 Q3 = x(90.25) = 814 + 0.25(814 – 814) = 814 

IQR = 814 – 498.25 = 315.75 

The fences on the right are 814 + 1.5(315.75) = 1287.625 and 814 + 3(315.75) = 1761.25.  There are 9 

values above the lower, inner fence of which 4 are above the outer fence.   
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1 321   21 469   41 537   61 609   81 717   101 900 

2 324   22 472   42 538   62 622   82 720   102 934 

3 357   23 472   43 544   63 635   83 723   103 939 

4 377   24 478   44 547   64 642   84 729   104 958 

5 387   25 480   45 549   65 644   85 739   105 983 

6 403   26 481   46 550   66 650   86 762   106 1023 

7 423   27 483   47 552   67 651   87 766   107 1077 

8 428   28 490   48 553   68 653   88 792   108 1082 

9 431   29 492   49 555   69 663   89 797   109 1130 

10 434   30 493   50 564   70 672   90 814   110 1144 

11 436   31 500   51 569   71 673   91 814   111 1168 

12 442   32 509   52 572   72 674   92 819   112 1333 

13 447   33 512   53 573   73 684   93 825   113 1368 

14 448   34 513   54 575   74 687   94 828   114 1383 

15 448   35 519   55 576   75 691   95 830   115 1385 

16 452   36 531   56 576   76 694   96 838   116 1404 

17 457   37 532   57 581   77 698   97 838   117 2327 

18 466   38 533   58 590   78 713   98 845   118 2614 

19 467   39 534   59 603   79 716   99 853   119 4537 

20 469   40 536   60 608   80 717   100 864   120 66592 

  

Could we have 9 outliers of which 4 are extreme outliers? What if the distribution is a highly skewed 

distribution like the log-normal distribution? 

 

The normal distribution has the density function of 
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Here, Q1 = e
-0.67449

 = 0.50942, Q3 = e
0.67449

 = 1.96303, IQR = 1.45361 and the fences on the right are at 

4.14345 and 6.32875.  Now, 7.758% of the values are to the right of the inner fence and 3.257% are to 

the right of the outer fence.  Data falling into this distributional shape would seem to be outliers when 

they are just in the upper tail. Since most tests for outliers such as Tukey’s fences or Grubb’s test (see 

articles: http://en.wikipedia.org/wiki/Grubbs’_test_for_outliers and 

http://www.graphpad.com/quickcalcs/GrubbsHowTo.cfm ) assume that we have a normal distribution, 

what should the analyst / statistician do? 

Transforming the Data 

There are transformations such as the Box-Cox transformation 
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visually appear normally shaped and more importantly pass tests for normality (see Testing for 

Normality: http://www.providence.edu/mcs/rbg/stat/Testing_for_Normality.pdf).  This was done on the 

LDH data with all 120 values.  Both the skewness and kurtosis were unacceptable by D’Agostino’s test.  

With 119 values the kurtosis was acceptable but the skewness was just barely acceptable.  With 118 

values both skewness and kurtosis were acceptable.  The transformation used was 
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Letting the two highest values of LDH (4537 and 66592) be outliers and using the transformed data on 

the remaining 118 values the first fence will be at 2873 so that only the two highest values #119 and 

#120 would be declared outliers.  It is somewhat circular whether one should declare outliers first and 

then do the transform or do the transform and then look for outliers.  The number of outliers should be 

small in number typically at most one or two.  A statistical definition states that an outlier should be “a 

point in a sample widely separated from the main cluster of points in the sample.” They should be errors 

in measurement or extremely unlikely events.  Assuming that the LDH data is normally distributed, 

which of course it isn’t by any test of normality, would produce an unacceptable 9 outliers.           
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