
Functions of a Random Variable & Moment Generating Functions – Prof. Richard B. Goldstein 
 
Discrete 
 
Y = u(X) is a one-to-one (1-1) transform 
 
Let y = u(x) and the inverse x = w(y).  Then g(y) = f[w(y)] is the probability distribution of Y 
 
 
Y1 = u1(X1, X2) and Y2 = u2(X1, X2) are 1-1 transforms 
 
Let y1 = u1(x1, x2) and y2 = u2(x1, x2) have inverse functions x1 = w1(y1, y2) and x2 = w2(y1, y2) 
 
Then g(y1, y2) = f[w1(y1, y2), w2(y1, y2)] 
 
Continuous 
 
As above, but now g(y) = f[w(y)] |J| where J = w′(y) is the Jacobian of the transform 
 
Also as above, but now g(y1, y2) = f[w1(y1, y2), w2(y1, y2)] |J|  

where J is given by the 2 by 2 determinant:
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Note: These concepts basically follow the rules for integral substitution or transforms in two variables 
 
Moments 

rth moment about the origin 
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moments can also be taken about the mean – for example the variance is the 2nd moment about the mean 
 
 moment generating functions and their properties 
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If two r.v.’s have the same moment generating functions, then they have the same probability dist. 
 
MX+a(t) = eatMX(t) 
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Discrete Distribution Probability Function Moment Generating 
Function 
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Continuous 
Distribution Probability Function 

Moment Generating 
Function 
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The moment generating functions for hypergeometric, beta, and lognormal distributions either do not 
exist or are too complicated to express in closed form. 


