BINOMTIAL vs. POISSON vs. NORMAL DISTRIBUTIONS

Rule of thumb:

e Use Poisson to approximate Binomial when n is large and p is small.
Let A =np.

e Use Normal to approximate Binomial when both np >5 and nq > 5.
Let p=np, o= npq

Limiting Form of the Binomial is the Poisson distribution
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and using L Hopital’s Rule
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Then, using all the limits from above b(k; n, p) — lge_kl =

Note: Let A= number of customers arriving per time unit. Then, if that time unit is broken up
into n smaller sub-intervals, the probability of an arrival in that sub-interval is A/n. The
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Poisson distribution.



Asymptotic Expansion of the Tail of the Normal Distribution
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Continuing, we find
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For example,

Q6) =9.86x 10" Zoooo1 = Z10 = 3.71902

Q(10)=7.62x 10 210" = 4.265

Q(20)=2.75x 10 210" =4.753

Q(30)=4.91x 10" 210" = 6.361

=0.262



