2-D Rendering of 3-D Objects
Projection and Perspective

Prof. Richard B. Goldstein

L \

."I

(xe, ye, ze) &

e

90- ¢

yxe® + ye’

To go from a 3-D coordinate system of (X, y, z) to a 2-D coordinate system of (u, v) two
rotations are made. The first is a rotation of angle 90° + 6 = n/2 + 0 around the z-axis and

the second is a rotation of —¢ around the x-axis. The new coordinates are found by
multiplying two matrices:
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‘u = —X,Sind + y,cosH =
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Using screen graphics with the origin at (cx, cy) and scale=s the new point is located at
(cx + s*u, cy — s*v). Remember, the y-axis is upside down in screen graphics.



If the picture is in perspective, then use the following
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Using the common ratios in the triangle shown on the right the (u, v) coordinates are
reduced by a factor of t. The distance from the point (Xo, Yo, Zo) to the viewing plane is w

(assume w > 0),
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which gives the new u and v coordinates as:
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Note: k only affects the scaled size of objects, not their shape.



