Saving for and Spending in Retirement

Input Variables:

S	current salary (\$)
p	percentage saved each year (\%)
r	growth rate of investments (\%)
g	growth rate of salary/raise (\%)
C	current amount saved for retirement (\$)
t	years until retirement (yrs)
L	life expectancy in retirement (yrs)

Output Variables:

FS future salary (\$)
FV future value of savings (\$)
FC future value of current amount saved (\$)
FT future total in retirement (\$)
YI yearly income for first year of retirement (\$)
$\mathrm{q} \quad$ percentage of yearly income needed in retirement w/o Social Security (\%)
x percentage to withdraw to make retirement last L years
Assumptions: Investments grow at $\mathrm{r} \%$ each year and salary grows at $\mathrm{g} \%$ until retirement in t years. The amount invested for retirement is proportional, being $\mathrm{p} \%$ of each year's salary. Yearly income from investments continues to grow at $\mathrm{g} \%$ in retirement and the amount invested continues to grow at $\mathrm{r} \%$. All calculations use continuous compounding, which means that the number of compounding periods, k, goes to infinity.
$\mathrm{FS}=\mathrm{Se}^{\mathrm{gtt}}$ is the future salary at retirement t years into the future

ACCUMULATION PHASE

$$
\begin{aligned}
& \mathrm{FV}=\frac{\mathrm{pS}}{\mathrm{k}}\left(1+\frac{\mathrm{r}}{\mathrm{k}}\right)^{\mathrm{kt}-1}+\frac{\mathrm{pS}}{\mathrm{k}}\left(1+\frac{\mathrm{g}}{\mathrm{k}}\right)\left(1+\frac{\mathrm{r}}{\mathrm{k}}\right)^{\mathrm{kt}-2}+\cdots+\frac{\mathrm{pS}}{\mathrm{k}}\left(1+\frac{\mathrm{g}}{\mathrm{k}}\right)^{\mathrm{kt}-2}\left(1+\frac{\mathrm{r}}{\mathrm{k}}\right)+\frac{\mathrm{pS}}{\mathrm{k}}\left(1+\frac{\mathrm{g}}{\mathrm{k}}\right)^{\mathrm{kt}-1} \\
& \mathrm{FV}=\frac{\mathrm{pS}}{\mathrm{k}} \frac{\left(1+\frac{\mathrm{r}}{\mathrm{k}}\right)^{\mathrm{kt}}-\left(1+\frac{\mathrm{g}}{\mathrm{k}}\right)^{\mathrm{kt}}}{\left(1+\frac{\mathrm{r}}{\mathrm{k}}\right)-\left(1+\frac{\mathrm{g}}{\mathrm{k}}\right)}=\frac{\mathrm{pS}}{\mathrm{r}-\mathrm{g}}\left[\left(1+\frac{\mathrm{r}}{\mathrm{k}}\right)^{\mathrm{kt}}-\left(1+\frac{\mathrm{g}}{\mathrm{k}}\right)^{\mathrm{kt}}\right] \\
& \lim _{\mathrm{k} \rightarrow \infty} \mathrm{FV}=\frac{\mathrm{pS}}{\mathrm{r}-\mathrm{g}}\left(\mathrm{e}^{\mathrm{rt}}-\mathrm{e}^{\mathrm{gt}}\right) \\
& \lim _{\mathrm{r} \rightarrow \mathrm{~g}} \mathrm{FV}=\mathrm{pSte}^{\mathrm{gt}}
\end{aligned}
$$

$$
F V=\left\{\begin{array}{lr}
\frac{\mathrm{pS}}{\mathrm{r}-\mathrm{g}}\left(\mathrm{e}^{\mathrm{tt}}-\mathrm{e}^{\mathrm{gt}}\right) \mathrm{r} \neq \mathrm{g} \\
\mathrm{ptSe} & \mathrm{r}=\mathrm{g}
\end{array}\right\} \text { is the future value of savings from future investments }
$$

The current amount saved for retirement grows from $\$ \mathrm{C}$ to $\mathrm{FC}=\mathrm{Ce}^{\mathrm{rt}}$
The total amount t years later at retirement has accumulated to $\mathrm{FT}=\mathrm{FV}+\mathrm{FC}$.

$$
\mathrm{FT}= \begin{cases}\frac{\mathrm{pS}}{\mathrm{r}-\mathrm{g}}\left(\mathrm{e}^{\mathrm{rt}}-\mathrm{e}^{\mathrm{gt}}\right)+\mathrm{Ce}^{\mathrm{rt}} & \mathrm{r} \neq \mathrm{g} \\ (\mathrm{ptS}+\mathrm{C}) \mathrm{e}^{\mathrm{rt}} & \mathrm{r}=\mathrm{g}\end{cases}
$$

This represents a more realistic estimate of the total in retirement because not only do investments grow, but the amount added each year to retirement investments grows with one's salary.

Example: One has $\$ 50,000$ (C) saved for retirement and an annual salary of $\$ 40,000$ (S). Their salary grows at $3 \%(\mathrm{~g})$ annually and $15 \%(\mathrm{p})$ of their salary is saved each year for retirement. If their investment grows at 5\% (r), then the amount accumulated 30 years later when they retire is given by:

$$
\begin{aligned}
& \mathrm{FT}=\frac{\mathrm{pS}}{\mathrm{r}-\mathrm{g}}\left(\mathrm{e}^{\mathrm{rt}}-\mathrm{e}^{\mathrm{gt}}\right)+\mathrm{Ce}^{\mathrm{rt}}=\frac{0.15(40000)}{0.05-0.03}\left(\mathrm{e}^{0.05(30)}-\mathrm{e}^{0.03(30)}\right)+50000 \mathrm{e}^{0.05(30)} \\
& \mathrm{FT}=\frac{6000}{0.02}(4.481689 \ldots-2.459603 \ldots)+50000(4.481689 \ldots)=606,625.79+224,084.45=830,710.24
\end{aligned}
$$

The current amount saved of $\$ 50,000$ grows to $\$ 224,085$ and the amount added grows to $\$ 606,626$ for a total of almost $\$ 830,710$ at retirement.

SPENDING IN RETIREMENT

Now, that the savings nest egg has been calculated, how much can one spend in retirement to last L years, one's life expectancy? Again assume that the yearly income (YI) continues to grow at $\mathrm{g} \%$ and investments grow at $\mathrm{r} \%$ with continuous compounding. Let the present value, PV, be set to the nest egg, FT. That is $\mathrm{PV}=\mathrm{FT}$. What is the yearly income (YI) that one can be extract from their retirement account to last the L years of one's life expectancy?
$P V=\frac{Y I}{k}+\frac{Y I}{k}\left(\frac{1+\frac{\mathrm{g}}{\mathrm{k}}}{1+\frac{\mathrm{r}}{\mathrm{k}}}\right)+\frac{\mathrm{YI}}{\mathrm{k}}\left(\frac{1+\frac{\mathrm{g}}{\mathrm{k}}}{1+\frac{\mathrm{r}}{\mathrm{k}}}\right)^{2}+\frac{\mathrm{YI}}{\mathrm{k}}\left(\frac{1+\frac{\mathrm{g}}{\mathrm{k}}}{1+\frac{\mathrm{r}}{\mathrm{k}}}\right)^{3}+\cdots+\frac{\mathrm{YI}}{\mathrm{k}}\left(\frac{1+\frac{\mathrm{g}}{\mathrm{k}}}{1+\frac{\mathrm{r}}{\mathrm{k}}}\right)^{\mathrm{kL}-1}$
$\mathrm{PV}=\frac{\mathrm{YI}}{\mathrm{k}}\left[\frac{\left(1-\left(\frac{1+\frac{\mathrm{g}}{\mathrm{k}}}{1+\frac{\mathrm{r}}{\mathrm{k}}}\right)^{\mathrm{kL}}\right.}{1-\frac{1+\frac{\mathrm{g}}{\mathrm{k}}}{1+\frac{\mathrm{r}}{\mathrm{k}}}}\right]$
$\lim _{k \rightarrow \infty} P V=\frac{Y I}{r-g}\left(1-e^{(g-r) L}\right)$

If $\mathrm{g}=\mathrm{r}$, then $\mathrm{PV}=\frac{\mathrm{YI}}{\mathrm{k}}(\mathrm{kL})=\mathrm{YI} * \mathrm{~L}$.
$Y I= \begin{cases}\frac{(r-g) P V}{1-e^{(g-r) L}} & \text { for } r \neq g \\ \frac{P V}{L} & \text { for } r=g\end{cases}$

Example continued:

$\mathrm{YI}=\frac{(0.05-0.03) 830710.24}{1-\mathrm{e}^{(0.05-0.03) 20}}=0.0606649 \ldots(830710.24)=\$ 50,394.95$
That is, if one can expect to live $20(\mathrm{~L})$ years, then the yearly income starts out a $\$ 50,394.95$ and grows at the rate of 3% a year in retirement to $\$ 91,825.59$ after 20 years. Because the final earned salary is $\mathrm{Se}^{\mathrm{gt}}=40000 \mathrm{e}^{0.03(30)}=\$ 98,384.12$ this represents 51.22% of previous yearly income. Even with Social Security one may still feel short of the amount needed. What percentage, p, should be saved each year to achieve a yearly income (YI) that is $\mathrm{q}(\%)$ of the final earned yearly income?

Setting PV $=\mathrm{FT}$, solve $\mathrm{YI}=\mathrm{q}^{*}$ FS. This becomes,
$\left[\frac{r-g}{1-e^{(g-r) L}}\right]\left[p S\left(\frac{e^{\mathrm{rt}}-\mathrm{e}^{\mathrm{gt}}}{\mathrm{r}-\mathrm{g}}+\mathrm{Ce}^{\mathrm{rt}}\right)\right]=\mathrm{qSe}^{\mathrm{gt}}$
Solving for $\mathrm{p}, \mathrm{p}=\frac{\mathrm{qSe}}{} \mathrm{g}^{\mathrm{gt}}-\mathrm{qSe} \mathrm{e}^{\mathrm{gt}+\mathrm{gL}-\mathrm{rL}}-\mathrm{C}(\mathrm{r}-\mathrm{g}) \mathrm{e}^{\mathrm{tt}}$

Example

If $q=0.6$,

$$
\begin{aligned}
& \mathrm{p}=\frac{0.6(40000) \mathrm{e}^{0.03(30)}-0.6(40000) \mathrm{e}^{0.03(30)+0.03(20)-0.05(20)}-50000(0.05-0.03) \mathrm{e}^{0.05(30)}}{40000\left(\mathrm{e}^{0.05(30)}-\mathrm{e}^{0.03(30)}\right)} \\
& \mathrm{p}=\frac{59030.47-39569.32-4481.69}{80883.44}=0.185198 \ldots
\end{aligned}
$$

By increasing the proportion saved from 15% to 18.5% one can achieve 60% of one's previous salary and continue to have that yearly income grow at the 3% during retirement.

Suppose that both growth rates are equal, $\mathrm{r}=\mathrm{g}=3 \%$. Then the future nest egg grows to
$\mathrm{FT}=(\mathrm{ptS}+\mathrm{C}) \mathrm{e}^{\mathrm{rt}}=[(0.15)(30)(40000)+50000] \mathrm{e}^{0.03(30)}=230000(2.459603 \ldots)=\$ 565,708.72$
$\mathrm{YI}=\mathrm{PV} / \mathrm{L}=565708.72 / 20=\$ 28,285.44$ which is only 28.75% of the previous income. Set
 One would need to save 35.83% of one's salary each year if the rate of growth of salary and investments are equal. In this situation the actual value of r and g are not needed.

How long can one expect their retirement savings to last with a yearly withdrawal (W) that grows each year at the rate of $\mathrm{g} \%$?

Using $W=\left\{\begin{array}{ll}\frac{(r-g) P V}{1-e^{(g-r) L}} & \text { for } r \neq g \\ \frac{P V}{L} & \text { for } r=g\end{array}\right.$ and solving for L we find $L \begin{array}{ll}L= \begin{cases}\ln \left(1-\frac{(r-g) P V}{W}\right) /(g-r) g \neq r \\ P V / W & g=r\end{cases} \\ \hline\end{array}$
If $W=\$ 59,030.47$ (60% of final salary), then $L=14.22$ years, short of the 20 year life expectancy. If the funds grow at 3% along with the needs, then the money saved will only last 9.58 years and if $\mathrm{C}=0$ it will only last $\mathrm{L}=\mathrm{p}^{*} \mathrm{~S}^{*} \mathrm{t} /(\mathrm{q} * \mathrm{~S})=\mathrm{pt} / \mathrm{q}=0.15(30) / 0.6=7.5$ years again where the values of r and g are not needed.

BALANCE AFTER t YEARS

$$
B(t)= \begin{cases}\mathrm{PVe}^{\mathrm{rt}}-\mathrm{W}\left(\frac{\mathrm{e}^{\mathrm{rt}}-\mathrm{e}^{\mathrm{gt}}}{\mathrm{r}-\mathrm{g}}\right) & \mathrm{r} \neq \mathrm{g} \\ (\mathrm{PV}-\mathrm{Wt}) \mathrm{e}^{\mathrm{rt}} & \mathrm{r}=\mathrm{g}\end{cases}
$$

The graph shows the accumulation while working and spending in retirement. One starts with $\$ 50,000$, peaks at $\$ 830,710$ after 30 years, and finally runs out at the end of 20 years.

ALTERNATIVE

Perhaps the assumption of a yearly income growth equal to previous salary growth rates is too demanding and the years of income is needed might exceed life expectancy.

Example

Using $\mathrm{YI}=\frac{(\mathrm{r}-\mathrm{g}) \mathrm{PV}}{1-\mathrm{e}^{(\mathrm{g}-\mathrm{r}) \mathrm{L}}}$ let us assume $\mathrm{PV}=\$ 1,000,000, \mathrm{r}=5 \%, \mathrm{~g}=1.5 \%$, and $\mathrm{L}=25$.
$\mathrm{YI}=\frac{(0.05-0.015) 1000000}{1-\mathrm{e}^{(0.015-0.05025}}=\frac{35000}{1-0.416862 \ldots}=\$ 60,020.10($ this is $6.00 \%)$
If one can live with a 1.5% yearly increase (the current proposed Social Security increase for 2014) and can achieve an average return of 5% on investments, then one can have their nest egg last 25 years and they can withdraw 6% of that nest egg starting the first year.

If one only withdraws $\$ 54,000$ to start, then the $\$ 1,000,000$ can last longer:
$\mathrm{L}=\frac{\ln \left(1-\frac{(0.050-0.015) 1000000}{54000}\right)}{0.015-0.050}=\frac{-1.044545 \ldots}{-0.035}=29.84$ years

APPENDIX

$\frac{a^{n}-b^{n}}{a-b}=a^{n-1}+a^{n-2} b+a^{n-3} b^{2}+\cdots+a b^{n-2}+b^{n-1}$
$\lim _{k \rightarrow \infty}\left(1+\frac{r}{k}\right)^{k t}=e^{r t}$ comes from the use of L'Hôpital's rule where $x=1 / k$ and take exponential function:
$\lim _{\mathrm{k} \rightarrow \infty} \ln \left(1+\frac{\mathrm{r}}{\mathrm{k}}\right)^{\mathrm{kt}}=\lim _{\mathrm{k} \rightarrow \infty} \mathrm{kt} \ln \left(1+\frac{\mathrm{r}}{\mathrm{k}}\right)=\lim _{\mathrm{x} \rightarrow 0} \frac{\mathrm{t} \ln (1+\mathrm{rx})}{\mathrm{x}} \Rightarrow \lim _{\mathrm{x} \rightarrow 0} \frac{\frac{\mathrm{rt}}{1+\mathrm{rx}}}{1}=\mathrm{rt}$

