Counterexample for Mixed Partial Derivative

For most textbook examples in multivariate calculus $f_{xy}(a, b) = f_{yx}(a, b)$. The following counterexample shows a function where f_x and f_y are continuous everywhere and yet $f_{xy}(0, 0) \neq f_{yx}(0, 0)$ because they are not continuous functions at the origin. In fact, $f_{xy}(0, 0) = 1$ and $f_{yx}(0, 0) = -1$.

Clairaut's Theorem Suppose f is defined on a disk D that contains the point (a, b). If the functions f_{xy} and f_{yx} are both continuous on D, then $f_{xy}(a, b) = f_{yx}(a, b)$.

$$f(x, y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases}$$

f(**x**, **y**) is continuous

Using polar coordinates, $x = r\cos\theta$ and $y = r\sin\theta$, $f(x, y) = f(r, \theta) = r^2 \cos\theta \sin\theta \frac{r^2(\cos^2\theta - \sin^2\theta)}{r^2(\cos^2\theta + \sin^2\theta)} = \frac{r^2\sin4\theta}{4}$

Therefore $|f(xy)| \le r^2/4 \to 0$ as $r \to 0$, and f(x, y) is continuous at the origin.

 $f_x(x, y)$ and $f_y(x, y)$ are both continuous

$$\begin{aligned} \left| f_x(x,y) \right| &= \left| \frac{x^4 y + 4x^2 y^3 - y^5}{(x^2 + y^2)^2} \right| = \left| r(\cos^4 \theta \sin \theta + 4\cos^2 \theta \sin^3 \theta - \sin^5 \theta) \right| \le 6r \to 0 \text{ as } r \to 0 \\ f_x(0,0) &= \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{(h)(0) \frac{h^2 - 0}{h^2 + 0} - 0}{h} = \lim_{h \to 0} \frac{0}{h} = 0 \\ \left| f_y(x,y) \right| &= \left| \frac{x^5 - 4x^3 y^2 - xy^4}{(x^2 + y^2)^2} \right| = \left| r(\cos^5 \theta - 4\cos^3 \theta \sin^2 \theta - \cos \theta \sin^4 \theta) \right| \le 6r \to 0 \text{ as } r \to 0 \end{aligned}$$

$$f_{y}(0,0) = \lim_{k \to 0} \frac{f(0,0+k) - f(0,0)}{k} = \lim_{k \to 0} \frac{(0)(k)\frac{0-k^{2}}{0+k^{2}} - 0}{k} = \lim_{k \to 0} \frac{0}{k} = 0$$

 $f_{xy}(x,y)$ and $f_{yx}(x,y)$ are not continuous at the origin

$$f_{xy}(x,y) = f_{yx}(x,y) = \frac{x^6 + 9x^4y^2 - 9x^2y^4 - y^6}{(x^2 + y^2)^3} = \cos^6\theta + 9\cos^4\theta\sin^2\theta - 9\cos^2\theta\sin^4\theta - \sin^6\theta = \cos 2\theta(1 + 2\sin^2 2\theta)$$

If $\theta = 0$ (x-axis), then $f_{xy}(x,y) = 1$. If $\theta = \pi/2$ (y-axis), then $f_{xy}(x,y) = -1$. $f_{xy}(x, y)$ is dependent on θ only.

$$f_{xy}(0,0) = \lim_{k \to 0} \frac{f_x(0,0+k) - f_x(0,0)}{k} = \lim_{k \to 0} \frac{\frac{-k^5}{k^4} - 0}{k} = \lim_{k \to 0} (-1) = -1$$

$$f_{yx}(0,0) = \lim_{h \to 0} \frac{f_y(0+h,0) - f_y(0,0)}{h} = \lim_{h \to 0} \frac{\frac{h^5}{h^4} - 0}{h} = \lim_{h \to 0} (+1) = 1$$