
Counterexample for Mixed Partial Derivative 

For most textbook examples in multivariate calculus fxy(a, b) = fyx(a, b).  The following counterexample shows 

a function where fx and fy are continuous everywhere and yet fxy(0, 0) ≠ fyx(0, 0) because they are not 

continuous functions at the origin. In fact, fxy(0, 0) = 1 and fyx(0, 0) = -1. 

Clairaut’s Theorem  Suppose f is defined on a disk D that contains the point (a, b).  If the functions fxy and fyx 

are both continuous on D, then fxy(a, b) = fyx(a, b).   
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f(x, y) is continuous 

Using polar coordinates,  sinryandcosrx , f(x, y) = 
4
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Therefore |f(xy)| ≤ r
2
/4 →  0 as r → 0, and f(x, y) is continuous at the origin. 

fx(x, y) and fy(x, y) are both continuous 
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fxy(x,y) and fyx(x,y) are not continuous at the origin 
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If θ = 0 (x-axis), then fxy(x,y) = 1.  If θ = π/2 (y-axis), then fxy(x,y) = -1. fxy(x, y) is dependent on θ only. 
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